segunda-feira, 5 de setembro de 2011

Computador biologico destroi celulas de cancer



Computador biológico destrói células de câncer
As etapas da operação do biocomputador. A célula mais escura é uma célula saudável, e a célula verde é uma célula cancerosa HeLa. Em cima, o DNA (fitas azuis) é injetado nas células. Na linha do meio, o circuito detecta o perfil miRNA e desencadeia a morte celular. Na linha inferior, a célula verde sofre apoptose, enquanto a célula saudável permanece intacta.[Imagem: Yaakov Benenson]
Biocomputador
Cientistas incorporaram um computador biológico em células humanas in vitro.
O processador biológico reconhece determinadas células cancerosas usando combinações lógicas de cinco fatores moleculares específicos do câncer
Ao encontrar as células, o computador biológico à base de DNA dispara o mecanismo de autodestruição das células, a chamada apoptose, destruindo o tumor.
No futuro, processadores biológicos desse tipo poderão ser usados para o estudo de novos medicamentos e para tratar ou prevenir doenças.
Lógica booleana biológica
Zhen Xie e seus colegas do Instituto ETH, da Suíça, projetaram um circuito regulatório que detecta os níveis de um conjunto de microRNAs expressos em uma célula-alvo.
Quando encontra uma correspondência, que só existirá nas células cancerosas, o circuito aciona o processo de autodestruição celular, sem afetar as células normais.
Xie trabalha com o Dr. Yaakov Benenson, um dos pioneiros no campo dos computadores biológicos, "circuitos" à base de moléculas de DNA que operam em células vivas.
"Os fatores miRNA são submetidos a cálculos booleanos em cada célula onde são detectados. O biocomputador combina os fatores usando operações lógicas como AND e NOT, e somente gera o resultado necessário, ou seja, a morte celular, quando o cálculo inteiro com todos os fatores resulta em um valor lógico TRUE," explica o Dr. Benenson.
Computador biológico destrói células de câncer
Os primeiros cálculos de um biocomputador foram demonstrados pela equipe do Dr. Benenson em 2007. [Imagem: Kobi Benenson/Harvard]
Cálculo preciso
O principal objetivo da equipe é construir biocomputadores que detectem moléculas que contenham informações importantes sobre o bem-estar das células e processem essas informações para direcionar a resposta terapêutica apropriada quando a célula encontrada for anormal.
Agora, pela primeira vez eles criaram um "circuito" sintético multi-gene, cuja tarefa é distinguir entre o câncer e as células saudáveis e, posteriormente, induzir as células-alvo a se destruírem - sem a aplicação de nenhuma droga quimioterápica, por exemplo.
Os cientistas testaram a sua "rede genética" em dois tipos de células humanas cultivadas em laboratório: células do câncer cervical, chamadas de células HeLa, e células normais.
O biocomputador genético identificou e causou a destruição das células HeLa, mas não afetou as células saudáveis.
O circuito faz uma identificação positiva apenas quando todos os cinco fatores específicos do câncer estão presentes na célula, resultando em uma detecção do câncer de alta precisão.
Os pesquisadores esperam que o desenvolvimento possa servir de base para tratamentos anti-câncer muito específicos, embora o computador biológico sintético ainda esteja longe de poder ser testado em humanos.
Ficção científica possível
A seguir, a equipe pretende testar essa computação celular - filha de uma área emergente de pesquisas conhecida como biologia sintética - em um modelo animal.
Pode parecer ficção científica, mas Benenson acredita que isto é viável.
Talvez viável, mas não fácil: ainda existem problemas difíceis de resolver como, por exemplo, a inserção de genes estranhos em uma célula de forma eficiente e segura.
"Estamos ainda muito longe de um método de tratamento totalmente funcional para humanos. Este trabalho, entretanto, é um primeiro passo importante que demonstra a viabilidade de um método seletivo de diagnóstico ao nível de uma célula individual," disse Benenson.

Descoberta de brasileiros pode ajudar a reciclar CO2



Descoberta de brasileiros pode ajudar a reciclar dióxido de carbono (CO2)
Pesquisadores da Unesp de Presidente Prudente descobriram molécula capaz de capturar o gás atmosférico e convertê-lo em compostos que poderão ser utilizados no futuro por indústrias químicas.[Imagem: González et al.]

CO2 no lugar certo
A contribuição do excesso de emissão de dióxido de carbono (CO2) para as mudanças climáticas globais tem levado a comunidade científica a buscar formas mais eficientes para estocar e diminuir o lançamento do composto para a atmosfera.
Um novo estudo brasileiro abre o caminho para o desenvolvimento de tecnologias que possibilitem capturar quimicamente o CO2 da atmosfera e convertê-lo em produtos que possam ser utilizados pela indústria química.
O trabalho dos pesquisadores da Universidade Estadual Paulista (Unesp), em Presidente Prudente, poderá substituir reagentes altamente tóxicos, utilizados para fabricação de compostos orgânicos usados como pesticidas e fármacos, por "derivados" do dióxido de carbono capturado na atmosfera.
Molécula DBN
O elemento essencial da descoberta está em uma molécula, denominada DBN, uma base orgânica nitrogenada cuja fórmula química é C7H12N2.
Os pesquisadores brasileiros demonstraram que a DBN é capaz de capturar o dióxido de carbono, formando compostos (carbamatos).
Posteriormente, ela pode liberar o CO2 seletivamente a temperaturas moderadas.
Dessa forma, a molécula poderá ser utilizada como modelo para pesquisas sobre a captura seletiva de dióxido de carbono de diversas misturas de gases.
"Essa descoberta abre perspectivas sobre como poderemos fazer com que o composto resultante da ligação da DBN com o dióxido de carbono se forme em maior quantidade. Para isso, temos que estudar possíveis modificações em moléculas que apresentem semelhanças estruturais e funcionais com a DBN para que o composto seja mais eficiente," disse Eduardo René Pérez González, principal autor do estudo.
Tratamento de doenças
De acordo com o professor da Unesp, já se sabia que a DBN é capaz de capturar dióxido de carbono na presença de água.
Por esse processo, a molécula retira um hidrogênio da água, ganha uma carga positiva (próton) e gera íons hidroxílicos (negativos) que atacam o dióxido de carbono, formando bicarbonatos.
Até então, entretanto, não se tinha demonstrado que o composto também é capaz de capturar CO2, formando carbamato, por meio de uma ligação nitrogênio-carbono tipo uretano, que tem relação direta com um processo biológico em que 10% do dióxido de carbono do organismo humano é transportado por moléculas nitrogenadas.
Em função disso, o processo também poderia ser utilizado para o tratamento de determinadas doenças relacionadas com a quantidade de CO2 e seu transporte no organismo.
"Essa descoberta nos leva a pensar que também poderíamos utilizar esse trabalho para fins bioquímicos, tentando, por exemplo, melhorar esse processo para tratamento de doenças relacionadas à concentração de dióxido de carbono nas células e alguns tecidos, como o pulmonar", disse González.
Uso industrial do CO2
Já na área industrial, os carbamatos - como, por exemplo, poliuretanas - derivados da captura de dióxido de carbono pela molécula DBN poderiam substituir tecnologias que utilizam reagentes altamente tóxicos, como o fosgênio, para preparação de compostos orgânicos usados como pesticidas e fármacos e em outras aplicações industriais.
"A possibilidade de se utilizar o dióxido de carbono para construir ou sintetizar moléculas que contêm o agrupamento carbonílico, sem a necessidade de se usar fosgênio ou isocianatos, representaria uma grande vantagem", disse o pesquisador.